RIT scientist Donald Figer and his team are developing a new type of detector that uses LIDAR (LIght Detection and Ranging), a technique similar to radar, but which uses light instead of radio waves to measure distances. The project will deliver a new generation of optical/ultraviolet imaging LIDAR detectors that will significantly extend NASA science capabilities for planetary applications by providing 3-D location information for planetary surfaces and a wider range of coverage than the single-pixel detectors currently combined with LIDAR.
The device will consist of a 2-D continuous array of light sensing elements connected to high-speed circuits. The $547,000 NASA-funded program also includes a potential $589,000 phase for fabrication and testing.
The device will consist of an array of sensors hybridized to a high-speed readout circuit to enable robust performance in space. The radiation-hard detector will capture high-resolution images and consume low amounts of power.
The imaging component of the new detector will capture swaths of entire scenes where the laser beam travels. In contrast, today’s LIDAR systems rely upon a single pixel design, limiting how much and how fast information can be captured.
“You would have to move your one pixel across a scene to build up an image,” Figer says. “That’s the state of the art of LIDAR right now. That’s what is flying on spacecraft now, looking down on Earth to get topographical information and on instruments flying around other planets.”
The LIDAR imaging detector will be able to distinguish topographical details that differ in height by as little as one centimeter. This is an improvement in a technology that conflates objects less than one meter in relative height. LIDAR used today could confuse a boulder for a pebble, an important detail when landing a spacecraft.
Now, I know the latest state of the art of Lidar. It is good of you that you share this Flash Lidar. Thanks
ReplyDelete